Disjoint combinations profiling (DCP): a new method for the prediction of antibody CDR conformation from sequence
نویسندگان
چکیده
The accurate prediction of the conformation of Complementarity-Determining Regions (CDRs) is important in modelling antibodies for protein engineering applications. Specifically, the Canonical paradigm has proved successful in predicting the CDR conformation in antibody variable regions. It relies on canonical templates which detail allowed residues at key positions in the variable region framework or in the CDR itself for 5 of the 6 CDRs. While no templates have as yet been defined for the hypervariable CDR-H3, instead, reliable sequence rules have been devised for predicting the base of the CDR-H3 loop. Here a new method termed Disjoint Combinations Profiling (DCP) is presented, which contributes a considerable advance in the prediction of CDR conformations. This novel method is explained and compared with canonical templates and sequence rules in a 3-way blind prediction. DCP achieved 93% accuracy over 951 blind predictions and showed an improvement in cumulative accuracy compared to predictions with canonical templates or sequence rules. In addition to its overall improvement in prediction accuracy, it is suggested that DCP is open to better implementations in the future and that it can improve as more antibody structures are deposited in the databank. In contrast, it is argued that canonical templates and sequence rules may have reached their peak.
منابع مشابه
A complete, multi-level conformational clustering of antibody complementarity-determining regions
Classification of antibody complementarity-determining region (CDR) conformations is an important step that drives antibody modelling and engineering, prediction from sequence, directed mutagenesis and induced-fit studies, and allows inferences on sequence-to-structure relations. Most of the previous work performed conformational clustering on a reduced set of structures or after application of...
متن کاملRevisiting antibody modeling assessment for CDR-H3 loop
The antigen-binding site of antibodies, also known as complementarity-determining region (CDR), has hypervariable sequence properties. In particular, the third CDR loop of the heavy chain, CDR-H3, has such variability in its sequence, length, and conformation that ordinary modeling techniques cannot build a high-quality structure. At Stage 2 of the Second Antibody Modeling Assessment (AMA-II) h...
متن کاملStructural insights into parallel strategies for germline antibody recognition of lipopolysaccharide from Chlamydia.
The structure of the antigen-binding fragment from the monoclonal antibody S64-4 in complex with a pentasaccharide bisphosphate fragment from chlamydial lipopolysaccharide has been determined by x-ray diffraction to 2.6 Å resolution. Like the well-characterized antibody S25-2, S64-4 displays a pocket formed by the residues of germline sequence corresponding to the heavy and light chain V gene s...
متن کاملA Document Weighted Approach for Gender and Age Prediction Based on Term Weight Measure
Author profiling is a text classification technique, which is used to predict the profiles of unknown text by analyzing their writing styles. Author profiles are the characteristics of the authors like gender, age, nativity language, country and educational background. The existing approaches for Author Profiling suffered from problems like high dimensionality of features and fail to capture th...
متن کاملModeling Tertiary Structure of Complementarity Determining Region of Antibodies
Knowing the tertiary structure of proteins is important to predict protein function and to achieve rational drug design. However, huge amounts of money and time are needed to determine tertiary structures by experimental method. Only a small number of protein structures have been experimentally determined; therefore, prediction of the tertiary structure of proteins by computer should be of grea...
متن کامل